2023-24 MATH2048: Honours Linear Algebra II Homework 7 Answer

Due: 2023-11-06 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Definitions. Two linear operators T and U on a finite-dimensional vector space V are called simultaneously diagonalizable if there exists an ordered basis β for V such that both $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. Similarly, $A, B \in M_{n \times n}(F)$ are called simultaneously diagonalizable if there exists an invertible matrix $Q \in$ $M_{n \times n}(F)$ such that both $Q^{-1} A Q$ and $Q^{-1} B Q$ are diagonal matrices.
(a) Prove that if T and U are simultaneously diagonalizable linear operators on a finite-dimensional vector space V, then the matrices $[T]_{\beta}$ and $[U]_{\beta}$ are simultaneously diagonalizable for any ordered basis β.
(b) Prove that if A and B are simultaneously diagonalizable matrices, then L_{A} and L_{B} are simultaneously diagonalizable linear operators.

Solution.

(a) Since T and U are simultaneously diagonalizable, there exists an ordered basis α such that $[T]_{\alpha}$ and $[U]_{\alpha}$ are both diagonal matrices. For any ordered basis β, we have $[T]_{\beta}=\left[I_{V}\right]_{\alpha}^{\beta}[T]_{\alpha}\left[I_{V}\right]_{\beta}^{\alpha}$ and $[U]_{\beta}=\left[I_{V}\right]_{\alpha}^{\beta}[U]_{\alpha}\left[I_{V}\right]_{\beta}^{\alpha}$. Let $Q=\left[I_{V}\right]_{\alpha}^{\beta}$, then $Q^{-1}[T]_{\beta} Q=[T]_{\alpha}$ and $Q^{-1}[U]_{\beta} Q=[U]_{\alpha}$ are both diagonal. Therefore, $[T]_{\beta}$ and $[U]_{\beta}$ are simultaneously diagonalizable.
(b) Since A and B are simultaneously diagonalizable, there exists invertible $Q \in$ $M_{n \times n}(F)$ such that $Q^{-1} A Q$ and $Q^{-1} B Q$ are both diagonal. Suppose $Q=$ $\left[q_{1}, q_{2}, \ldots, q_{n}\right]$ where q_{i} is the i-th column of Q, and let $\beta=\left\{q_{1}, \ldots, q_{n}\right\}$, then β is linearly independent and thus is an ordered basis for F^{n}. Let α be the
standard ordered basis for F^{n}. Then $\left[L_{A}\right]_{\alpha}=A,\left[L_{B}\right]_{\alpha}=B$ and $\left[I_{F^{n}}\right]_{\beta}^{\alpha}=Q$.

$$
\begin{aligned}
{\left[L_{A}\right]_{\beta} } & =\left[I_{F^{n}}\right]_{\alpha}^{\beta}\left[L_{A}\right]_{\alpha}\left[I_{F^{n}}\right]_{\beta}^{\alpha}=Q^{-1} A Q \\
{\left[L_{B}\right]_{\beta} } & =\left[I_{F^{n}}\right]_{\alpha}^{\beta}\left[L_{B}\right]_{\alpha}\left[I_{F^{n}}\right]_{\beta}^{\alpha}=Q^{-1} B Q
\end{aligned}
$$

are both diagonal. Therefore L_{A} and L_{B} are simultaneously diagonalizable..
2. (a) Prove that if T and U are simultaneously diagonalizable operators, then T and U commute (i.e., $T U=U T$).
(b) Show that if A and B are simultaneously diagonalizable matrices, then A and B commute.

Solution.

(a) Since T and U are simultaneously diagonalizable, there exists an ordered basis β such that $[T]_{\beta}$ and $[U]_{\beta}$ are both diagonal matrices. Since diagonal matrices commute, one has $[T]_{\beta}[U]_{\beta}=[U]_{\beta}[T]_{\beta}$.

Therefore $[T U]_{\beta}=[T]_{\beta}[U]_{\beta}=[U]_{\beta}[T]_{\beta}=[U T]_{\beta}$, i.e. $T U=U T$.
(b) Since A and B are simulaneously diagonalizable, there exists invertible matric $Q \in M_{n \times n}(F)$ such that $Q^{-1} A Q$ and $Q^{-1} B Q$ are both diagonal. Therefore, $A B=Q\left(Q^{-1} A Q\right)\left(Q^{-1} B Q\right) Q^{-1}=Q\left(Q^{-1} B Q\right)\left(Q^{-1} A Q\right) Q^{-1}=B A$.
3. Let T be a linear operator on a finite-dimensional vector space V, and suppose that the distinct eigenvalues of T are $\lambda_{1}, \ldots, \lambda_{k}$. Prove that

$$
\operatorname{span}(\{x \in V: x \text { is an eigenvector of } T\})=E_{\lambda_{1}} \oplus E_{\lambda_{2}} \oplus \cdots E_{\lambda_{k}} .
$$

Solution.

- For any $v \in E_{\lambda_{i}} \cap\left(\sum_{j \neq i} E_{\lambda_{j}}\right)$, one has $T(v)=\lambda_{j} v$, and $v=\sum_{j \neq i} v_{j}$ where $v_{j} \in E_{\lambda_{j}}, j \neq i$. Then $T(v)=\sum_{j \neq i} T\left(v_{j}\right)=\sum_{j \neq i} \lambda_{j} v_{j}$.
Therefore, $0_{V}=T(v)-T(v)=\lambda_{i}\left(\sum_{j \neq i} v_{j}\right)-\sum_{j \neq i} \lambda_{j} v_{j}=\sum_{j \neq i}\left(\lambda_{i}-\lambda_{j}\right) v_{j}$.
Note that $\left(\lambda_{i}-\lambda_{j}\right) v_{j} \in E_{\lambda_{j}}$, and $\lambda_{i} \neq \lambda_{j}, i \neq j$. One has $\left(\lambda_{j}-\lambda_{i}\right) v_{j}=0_{V}$ and thus $v_{j}=0$ for $j=1, \ldots, k$. Thus $v=0$ and $\sum_{i=1}^{k} E_{\lambda_{i}}=\oplus_{i=1}^{k} E_{\lambda_{i}}$.
- Since $E_{\lambda_{j}} \subset \operatorname{span}(\{x \in V: x$ is an eigenvector of $T\})$, one has $\oplus_{j=1}^{k} E_{\lambda_{j}} \subset$ $\operatorname{span}(\{x \in V: x$ is an eigenvector of $T\})$.
- For any $v \in \operatorname{span}(\{x \in V: x$ is an eigenvector of $T\})$, there exist v_{j} such that $v=\alpha_{1} v_{1}+\cdots+\alpha_{p} v_{p}$ where v_{j} is in one of these eigenspaces. After grouping
v_{1}, \ldots, v_{p} by their eigenvalues, we have $v=w_{1}+\ldots+w_{k}$ where w_{j} is the linear combination of some v_{i} whose eignevalue are λ_{j}. Therefore, $w_{j} \in E_{\lambda_{j}}$ and $v \in \oplus_{j=1}^{k} E_{\lambda_{j}}$.

4. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v.
(a) For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial $g(t)$ such that $w=g(T)(v)$.
(b) Prove that the polynomial $g(t)$ in (a) can always be chosen so that its degree is less than or equal to $\operatorname{dim}(W)$.

Solution. $W=\operatorname{span}\left(\left\{v, T(v), \ldots, T^{k}(v), \ldots\right\}\right)$, where $v \neq 0$.
(a) If $w \in W$, then there exist $a_{0}, \ldots, a_{k} \in F$ such that $w=\sum_{i=0}^{k} a_{i} T^{i}(v)$. Let $g(t)=\sum_{i=0}^{k} a_{i} t^{i}$, then $w=g(T)(v)$.
If $w=g(T)(v)$ for some polynomial g. Since W is T-invariant, one has W is $g(T)$-invariant. Then $w=g(T)(v) \in W$
(b) Let $k=\operatorname{dim}(W)$, then $W=\operatorname{span}\left(\left\{v, T(v), \ldots, T^{k-1}(v)\right\}\right.$ and $\left\{v, T(v), \ldots, T^{k-1}(v)\right\}$ is a basis for W. Then for any $w \in W$, there exist $b_{0}, \ldots, b_{k-1} \in F$ such that $w=\sum_{j=0}^{k-1} b_{j} T^{j}(v)=g(T)(v)$ where $g(t)=\sum_{j=0}^{k-1} b_{j} t^{j} \in P_{k-1}(F)$.
5. Let A be an $n \times n$ matrix. Prove that $\operatorname{dim}\left(\operatorname{span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right) \leq n$.

Solution. Let $f_{A}(t)$ be the characteristic polynomial of $A, f_{A}(t)=\operatorname{det}\left(A-t I_{n}\right)=$ $(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\ldots+a_{0}$.
By Cayley-Hamilton theorem, one has $f_{A}(A)=O$. That is $(-1)^{n} A^{n}+a_{n-1} A^{n-1}+$ $\ldots+a_{0} I_{n}=O$ and $A^{n} \in \operatorname{span}\left(\left\{I_{n}, A, \ldots, A^{n-1}\right\}\right)$.
Note that $A^{n+1}=A * A^{n}=A(-1)^{(n+1)}\left(a_{n-1} A^{n-1}+\ldots+a_{0} I_{n}\right)=(-1)^{(n+1)}\left(a_{n-1} A^{n}+\right.$ $\left.\ldots+a_{0} A\right) \in \operatorname{span}\left(\left\{A, A^{2}, \ldots, A^{n}\right\}\right) \subset \operatorname{span}\left(\left\{I_{n}, A, \ldots, A^{n-1}\right\}\right)$.

By induction, one has $A^{m} \in \operatorname{span}\left(\left\{I_{n}, A, \ldots, A^{n-1}\right\}\right)$ for any $m \geq n$.
Therefore, $W=\operatorname{span}\left(\left\{I_{n}, A, \ldots, A^{n-1}\right\}\right)$, and thus $\operatorname{dim}(W) \leq n$.

