2023-24 MATH2048: Honours Linear Algebra II Homework 7 Answer

Due: 2023-11-06 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

- 1. **Definitions.** Two linear operators T and U on a finite-dimensional vector space V are called **simultaneously diagonalizable** if there exists an ordered basis β for V such that both $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. Similarly, $A, B \in M_{n \times n}(F)$ are called simultaneously diagonalizable if there exists an invertible matrix $Q \in M_{n \times n}(F)$ such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices.
 - (a) Prove that if T and U are simultaneously diagonalizable linear operators on a finite-dimensional vector space V, then the matrices $[T]_{\beta}$ and $[U]_{\beta}$ are simultaneously diagonalizable for any ordered basis β .
 - (b) Prove that if A and B are simultaneously diagonalizable matrices, then L_A and L_B are simultaneously diagonalizable linear operators.

Solution.

- (a) Since T and U are simultaneously diagonalizable, there exists an ordered basis α such that $[T]_{\alpha}$ and $[U]_{\alpha}$ are both diagonal matrices. For any ordered basis β , we have $[T]_{\beta} = [I_V]^{\beta}_{\alpha}[T]_{\alpha}[I_V]^{\alpha}_{\beta}$ and $[U]_{\beta} = [I_V]^{\beta}_{\alpha}[U]_{\alpha}[I_V]^{\alpha}_{\beta}$. Let $Q = [I_V]^{\beta}_{\alpha}$, then $Q^{-1}[T]_{\beta}Q = [T]_{\alpha}$ and $Q^{-1}[U]_{\beta}Q = [U]_{\alpha}$ are both diagonal. Therefore, $[T]_{\beta}$ and $[U]_{\beta}$ are simultaneously diagonalizable.
- (b) Since A and B are simultaneously diagonalizable, there exists invertible $Q \in M_{n \times n}(F)$ such that $Q^{-1}AQ$ and $Q^{-1}BQ$ are both diagonal. Suppose $Q = [q_1, q_2, \ldots, q_n]$ where q_i is the *i*-th column of Q, and let $\beta = \{q_1, \ldots, q_n\}$, then β is linearly independent and thus is an ordered basis for F^n . Let α be the

standard ordered basis for F^n . Then $[L_A]_{\alpha} = A$, $[L_B]_{\alpha} = B$ and $[I_{F^n}]_{\beta}^{\alpha} = Q$.

$$[L_A]_{\beta} = [I_{F^n}]^{\beta}_{\alpha} [L_A]_{\alpha} [I_{F^n}]^{\alpha}_{\beta} = Q^{-1}AQ$$
$$[L_B]_{\beta} = [I_{F^n}]^{\beta}_{\alpha} [L_B]_{\alpha} [I_{F^n}]^{\alpha}_{\beta} = Q^{-1}BQ$$

are both diagonal. Therefore L_A and L_B are simultaneously diagonalizable..

- 2. (a) Prove that if T and U are simultaneously diagonalizable operators, then T and U commute (i.e., TU = UT).
 - (b) Show that if A and B are simultaneously diagonalizable matrices, then A and B commute.

Solution.

- (a) Since T and U are simultaneously diagonalizable, there exists an ordered basis β such that [T]_β and [U]_β are both diagonal matrices. Since diagonal matrices commute, one has [T]_β[U]_β = [U]_β[T]_β.
 Therefore [TU]_β = [T]_β[U]_β = [U]_β[T]_β = [UT]_β, i.e. TU = UT.
- (b) Since A and B are simulaneously diagonalizable, there exists invertible matric $Q \in M_{n \times n}(F)$ such that $Q^{-1}AQ$ and $Q^{-1}BQ$ are both diagonal. Therefore, $AB = Q(Q^{-1}AQ)(Q^{-1}BQ)Q^{-1} = Q(Q^{-1}BQ)(Q^{-1}AQ)Q^{-1} = BA.$
- 3. Let T be a linear operator on a finite-dimensional vector space V, and suppose that the distinct eigenvalues of T are $\lambda_1, \ldots, \lambda_k$. Prove that

span $(\{x \in V : x \text{ is an eigenvector of } T\}) = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \in E_{\lambda_k}.$

Solution.

- For any $v \in E_{\lambda_i} \cap (\sum_{j \neq i} E_{\lambda_j})$, one has $T(v) = \lambda_j v$, and $v = \sum_{j \neq i} v_j$ where $v_j \in E_{\lambda_j}, j \neq i$. Then $T(v) = \sum_{j \neq i} T(v_j) = \sum_{j \neq i} \lambda_j v_j$. Therefore, $0_V = T(v) - T(v) = \lambda_i (\sum_{j \neq i} v_j) - \sum_{j \neq i} \lambda_j v_j = \sum_{j \neq i} (\lambda_i - \lambda_j) v_j$. Note that $(\lambda_i - \lambda_j) v_j \in E_{\lambda_j}$, and $\lambda_i \neq \lambda_j$, $i \neq j$. One has $(\lambda_j - \lambda_i) v_j = 0_V$ and thus $v_j = 0$ for j = 1, ..., k. Thus v = 0 and $\sum_{i=1}^k E_{\lambda_i} = \bigoplus_{i=1}^k E_{\lambda_i}$.
- Since $E_{\lambda_j} \subset \operatorname{span}(\{x \in V : x \text{ is an eigenvector of } T\})$, one has $\bigoplus_{j=1}^k E_{\lambda_j} \subset \operatorname{span}(\{x \in V : x \text{ is an eigenvector of } T\})$.
- For any $v \in \text{span}(\{x \in V : x \text{ is an eigenvector of } T\})$, there exist v_j such that $v = \alpha_1 v_1 + \dots + \alpha_p v_p$ where v_j is in one of these eigenspaces. After grouping

 $v_1, ..., v_p$ by their eigenvalues, we have $v = w_1 + ... + w_k$ where w_j is the linear combination of some v_i whose eignevalue are λ_j . Therefore, $w_j \in E_{\lambda_j}$ and $v \in \bigoplus_{j=1}^k E_{\lambda_j}$.

- 4. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v.
 - (a) For any w ∈ V, prove that w ∈ W if and only if there exists a polynomial g(t) such that w = g(T)(v).
 - (b) Prove that the polynomial g(t) in (a) can always be chosen so that its degree is less than or equal to dim(W).

Solution. $W = span(\{v, T(v), ..., T^k(v), ...\}), \text{ where } v \neq 0.$

- (a) If $w \in W$, then there exist $a_0, ..., a_k \in F$ such that $w = \sum_{i=0}^k a_i T^i(v)$. Let $g(t) = \sum_{i=0}^k a_i t^i$, then w = g(T)(v). If w = g(T)(v) for some polynomial g. Since W is T-invariant, one has W is g(T)-invariant. Then $w = g(T)(v) \in W$
- (b) Let $k = \dim(W)$, then $W = span(\{v, T(v), ..., T^{k-1}(v)\}$ and $\{v, T(v), ..., T^{k-1}(v)\}$ is a basis for W. Then for any $w \in W$, there exist $b_0, ..., b_{k-1} \in F$ such that $w = \sum_{j=0}^{k-1} b_j T^j(v) = g(T)(v)$ where $g(t) = \sum_{j=0}^{k-1} b_j t^j \in P_{k-1}(F)$.
- 5. Let A be an $n \times n$ matrix. Prove that $\dim(\operatorname{span}(\{I_n, A, A^2, \dots\})) \leq n$.

Solution. Let $f_A(t)$ be the characteristic polynomial of A, $f_A(t) = \det(A - tI_n) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_0$.

By Cayley-Hamilton theorem, one has $f_A(A) = O$. That is $(-1)^n A^n + a_{n-1} A^{n-1} + ... + a_0 I_n = O$ and $A^n \in span(\{I_n, A, ..., A^{n-1}\})$. Note that $A^{n+1} = A * A^n = A(-1)^{(n+1)}(a_{n-1}A^{n-1} + ... + a_0 I_n) = (-1)^{(n+1)}(a_{n-1}A^n + ... + a_0 A) \in span(\{A, A^2, ..., A^n\}) \subset span(\{I_n, A, ..., A^{n-1}\})$. By induction, one has $A^m \in span(\{I_n, A, ..., A^{n-1}\})$ for any $m \ge n$. Therefore, $W = span(\{I_n, A, ..., A^{n-1}\})$, and thus dim $(W) \le n$.