
2023-24 MATH2048: Honours Linear Algebra II

Homework 7 Answer

Due: 2023-11-06 (Monday) 23:59

For the following homework questions, please give reasons in your solutions.

Scan your solutions and submit it via the Blackboard system before due date.

1. Definitions. Two linear operators T and U on a finite-dimensional vector space V

are called simultaneously diagonalizable if there exists an ordered basis β for

V such that both [T ]β and [U ]β are diagonal matrices. Similarly, A,B ∈ Mn×n(F )

are called simultaneously diagonalizable if there exists an invertible matrix Q ∈

Mn×n(F ) such that both Q−1AQ and Q−1BQ are diagonal matrices.

(a) Prove that if T and U are simultaneously diagonalizable linear operators on a

finite-dimensional vector space V , then the matrices [T ]β and [U ]β are simul-

taneously diagonalizable for any ordered basis β.

(b) Prove that if A and B are simultaneously diagonalizable matrices, then LA and

LB are simultaneously diagonalizable linear operators.

Solution.

(a) Since T and U are simultaneously diagonalizable, there exists an ordered basis

α such that [T ]α and [U ]α are both diagonal matrices. For any ordered basis

β, we have [T ]β = [IV ]βα[T ]α[IV ]αβ and [U ]β = [IV ]βα[U ]α[IV ]αβ . Let Q = [IV ]βα,

then Q−1[T ]βQ = [T ]α and Q−1[U ]βQ = [U ]α are both diagonal. Therefore,

[T ]β and [U ]β are simultaneously diagonalizable.

(b) Since A and B are simultaneously diagonalizable, there exists invertible Q ∈

Mn×n(F ) such that Q−1AQ and Q−1BQ are both diagonal. Suppose Q =

[q1, q2, . . . , qn] where qi is the i-th column of Q, and let β = {q1, . . . , qn}, then

β is linearly independent and thus is an ordered basis for Fn. Let α be the
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standard ordered basis for Fn. Then [LA]α = A, [LB]α = B and [IFn ]αβ = Q.

[LA]β = [IFn ]βα[LA]α[IFn ]αβ = Q−1AQ

[LB]β = [IFn ]βα[LB]α[IFn ]αβ = Q−1BQ

are both diagonal. Therefore LA and LB are simultaneously diagonalizable..

2. (a) Prove that if T and U are simultaneously diagonalizable operators, then T and

U commute (i.e., TU = UT ).

(b) Show that if A and B are simultaneously diagonalizable matrices, then A and

B commute.

Solution.

(a) Since T and U are simultaneously diagonalizable, there exists an ordered basis

β such that [T ]β and [U ]β are both diagonal matrices. Since diagonal matrices

commute, one has [T ]β[U ]β = [U ]β[T ]β.

Therefore [TU ]β = [T ]β[U ]β = [U ]β[T ]β = [UT ]β, i.e. TU = UT .

(b) Since A and B are simulaneously diagonalizable, there exists invertible matric

Q ∈ Mn×n(F ) such that Q−1AQ and Q−1BQ are both diagonal. Therefore,

AB = Q(Q−1AQ)(Q−1BQ)Q−1 = Q(Q−1BQ)(Q−1AQ)Q−1 = BA.

3. Let T be a linear operator on a finite-dimensional vector space V , and suppose that

the distinct eigenvalues of T are λ1, . . . , λk. Prove that

span({x ∈ V : x is an eigenvector of T}) = Eλ1 ⊕ Eλ2 ⊕ · · ·Eλk .

Solution.

• For any v ∈ Eλi ∩ (
∑

j 6=iEλj ), one has T (v) = λjv, and v =
∑

j 6=i vj where

vj ∈ Eλj , j 6= i. Then T (v) =
∑

j 6=i T (vj) =
∑

j 6=i λjvj .

Therefore, 0V = T (v)− T (v) = λi(
∑

j 6=i vj)−
∑

j 6=i λjvj =
∑

j 6=i(λi − λj)vj .

Note that (λi − λj)vj ∈ Eλj , and λi 6= λj , i 6= j. One has (λj − λi)vj = 0V and

thus vj = 0 for j = 1, ..., k. Thus v = 0 and
∑k

i=1Eλi = ⊕ki=1Eλi .

• Since Eλj ⊂ span({x ∈ V : x is an eigenvector of T}), one has ⊕kj=1Eλj ⊂

span({x ∈ V : x is an eigenvector of T}).

• For any v ∈ span({x ∈ V : x is an eigenvector of T}), there exist vj such that

v = α1v1 + · · · + αpvp where vj is in one of these eigenspaces. After grouping
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v1, ..., vp by their eigenvalues, we have v = w1 + ...+ wk where wj is the linear

combination of some vi whose eignevalue are λj . Therefore, wj ∈ Eλj and

v ∈ ⊕kj=1Eλj .

4. Let T be a linear operator on a vector space V , let v be a nonzero vector in V , and

let W be the T -cyclic subspace of V generated by v.

(a) For any w ∈ V , prove that w ∈W if and only if there exists a polynomial g(t)

such that w = g(T )(v).

(b) Prove that the polynomial g(t) in (a) can always be chosen so that its degree

is less than or equal to dim(W ).

Solution. W = span({v, T (v), ..., T k(v), ...}), where v 6= 0.

(a) If w ∈ W , then there exist a0, ..., ak ∈ F such that w =
∑k

i=0 aiT
i(v). Let

g(t) =
∑k

i=0 ait
i, then w = g(T )(v).

If w = g(T )(v) for some polynomial g. Since W is T -invariant, one has W is

g(T )-invariant. Then w = g(T )(v) ∈W

(b) Let k = dim(W ), thenW = span({v, T (v), ..., T k−1(v)} and {v, T (v), ..., T k−1(v)}

is a basis for W . Then for any w ∈ W , there exist b0, ..., bk−1 ∈ F such that

w =
∑k−1

j=0 bjT
j(v) = g(T )(v) where g(t) =

∑k−1
j=0 bjt

j ∈ Pk−1(F ).

5. Let A be an n× n matrix. Prove that dim(span({In, A,A2, . . . })) ≤ n.

Solution. Let fA(t) be the characteristic polynomial of A, fA(t) = det(A− tIn) =

(−1)ntn + an−1t
n−1 + ...+ a0.

By Cayley-Hamilton theorem, one has fA(A) = O. That is (−1)nAn + an−1A
n−1 +

...+ a0In = O and An ∈ span({In, A, ..., An−1}).

Note that An+1 = A∗An = A(−1)(n+1)(an−1A
n−1+...+a0In) = (−1)(n+1)(an−1A

n+

...+ a0A) ∈ span({A,A2, ..., An}) ⊂ span({In, A, ..., An−1}).

By induction, one has Am ∈ span({In, A, ..., An−1}) for any m ≥ n.

Therefore, W = span({In, A, ..., An−1}), and thus dim(W ) ≤ n.
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